Bio-Rad Laboratories - C1000 Thermal Cycler

GENERAL DESCRIPTION:

This product is designed for laboratory analysis. This product amplifies DNA or cDNA extracted from any sample.

TECHNICAL DESCRIPTION: This is a peltier-based system which amplifies DNA.

🔵 Top Ti	er 🔵 Secon Fourth Tier	d Tier 🛛 Thii Bottom Tier	d Tier
RANKINGS			
	Biological	Chemical	Radiologica
FIELD USE System		N/A	N/A
MOBILE Laboratory		N/A	N/A
DIAGNOSTIC Laboratory		N/A	N/A
ANALYTICAL Laboratory		N/A	N/A

Notes

Traditional themocycler not intended for real time analysis.

Survey Source

Tier Selection

Vendor Supplied Information

CONTACT INFORMATION

Bio-Rad Laboratories 2000 Alfred Nobel Drive Hercules, CA. 94547 1-800-424-6723

COST

• \$8,000-8,700/system

• N/A/analysis

Scoring Analysis

System scores are compared across the four scenarios and ranked from highest to lowest.

Impact Chart

The Impact Chart is a spider graph representing specific categories and designed to give the reader a visual depiction of how a particular system is expected to operate across the four different scenarios. The score for each of the seven categories is presented as the percentage of the total possible score. Higher category scores extend the spokes of a graphic toward the outer edge of the chart. The area graphed for each of the four scenarios relates to how well the system performed in that scenario. Graphics for each of the four scenarios are super-imposed for ease of comparison.

Evaluation Criteria

Throughput:

- Between 30 and 60 minutes for detection
- 95-32 samples every 2 hours
 The system could be adapted to a semi-automated system with some effort
- Device or system is intended for multiple detection assays
- 2 solutions, buffer, eluents, and/or reagents
- 2 components
- Less than 5 minutes is required for set-up
- 3-5 steps are required for detection

Logistics:

- Very brief (minutes-hours) training and minimal technical skills
- Approximately the size of a toaster
- Between 5 and 25 kg
- Wired connections are available
- System or device has 110V electrical requirement

Operations:

- Can be used from 25°C to 37°C
- Components must be stored at room temperature (27 ° C)
- Device or system has peak performance at normal relative humidity conditions
- 5-10 years expected life
- Results cannot be viewed in real-time
- The system is not capable of autonomy
- The system software is closed and not available for modification
- The system hardware is closed and not available for modification

Detection:

- Not possible for the system to achieve 510K clearance
- Not possible for the system to achieve FDA approval
- \bullet Less than 50 μL
- Manual kit not integrated with the system handles spore lysis